Расчет калорифера: как рассчитать мощность прибора для нагрева воздуха для отопления

Онлайн-калькулятор расчета и мощности электрических калориферов – Т.С.Т.

Когда речь идет об обогреве обычных помещений, в которых температуру воздуха нужно поднять до уровня 20-25 градусов, выбор ТЭНов не представляет затруднений: из таблицы ТЭНов на сайте выбирается ТЭН нужного типоразмера, мощности и напряжения, количество ТЭНов определятся общей необходимой мощностью из расчета (в среднем) 1 кВт на 10-12 кв. м площади помещения при стандартной высоте потолка 3 м и общепринятой утепленности здания. При этом температура ТЭНа повышается незначительно, т.е. это собственная температура ТЭНа плюс 20-30 градусов. Иначе обстоит дело, когда температуру воздуха нужно поднять до 150, 200 и даже 250 градусов. Это происходит в сушилках, печках-пекарнях, окрасочных камерах. В этом случае общая температура ТЭНа будет очень высокая: собственная температура ТЭНа плюс 250 градусов окружающего воздуха. Такая температура может неблагоприятно сказаться на «здоровье» ТЭНа – он может попросту перегреться.

Рассмотрим конкретный пример. Допустим, в камере для порошковой окраски изделий необходимо создать температуру +200 градусов. Опуская детали расчета, используем для этой цели ТЭН 140 В13/2,5 Т 220 (трубка длиной 140см, диаметром 13мм, мощностью 2,5кВт, из нержавеющей стали). Этот ТЭН имеет удельную мощность около 4,8 Вт/кв. см, а собственную температуру около 600 градусов. В рабочем режиме температура ТЭНа достигает 600+200=800 градусов, что превышает максимально допустимую температуру ТЭНа. А если учесть «разрешенные» скачки напряжения (+10%), разрешенное отклонение по мощности ТЭНа (+5%), то общая температура ТЭНа может быть еще выше. Долговечность такого ТЭНа становится под вопросом.

Возьмем ТЭН 140 В13/2,0 Т 220 (такой же, как и предыдущий, только мощностью ниже -2,0 кВт вместо 2,5 кВт). У этого ТЭНа удельная мощность равна 3,86 Вт/кв. см, собственная температура – примерно 480 градусов, суммарная температура ТЭНа около 680 градусов, что уже не так критично.

Очевидно, первый ТЭН, как более мощный, разогреет камеру быстрее, количество этих ТЭНов, исходя из необходимой общей мощности для разогрева камеры до нужной температуры, потребуется меньше. Но в конечном итоге эти «плюсы» могут перекрыться «минусами»: более мощные, но перегретые ТЭНы будут чаще выходить из строя, а это потребует более частой остановки окрасочной камеры и сборки-разборки ТЭНовых узлов.

  • размеры и материал трубки ТЭНа;
  • мощность и собственную температуру ТЭНа;
  • эксплуатационные условия – температуру воздуха, качество обдува и др.

Расчет тепловой мощности обогрева помещения

Для правильного выбора нагревателя, предлагаем вам ознакомиться с правилами расчета тепловой мощности, необходимой для вашего конкретного случая применения:

V x T x K = ккал/ч

25777_164052.jpg

V – Объем обогреваемого помещения (длина х ширина х высота), м3

∆Т – Разница между ˚t воздуха вне помещения и необходимой ˚t внутри помещения, ˚С

К – Коэффициент тепловых потерь (зависит от типа конструкции и изоляции помещения):

Без теплоизоляции ( К=3,0-4,0 ) – Деревянная конструкция или конструкция из гофрированного металлического листа.

Простая теплоизоляция ( К=2,0-2,9 ) – Здание с одинарной кирпичной кладкой, упрощенная конструкция окон и крыши.

Средняя теплоизоляция ( К=1,0-1,9 ) – Стандартная конструкция. Двойная кирпичная кладка, крыша со стандартной кровлей, небольшое кол-во окон.

Высокая теплоизоляция ( К=0,6-0,9 ) – Кирпичные стены с двойной теплоизоляцией, небольшое кол-во окон со сдвоенными рамами, толстое основание пола, крыша из высококачественного теплоизоляционного материала.

Пример:

Объем помещения: 5 х 16 х 2,5 = 200

∆Т: Температура наружного воздуха -20 °С. Требуемая температура внутри помещения +25 °С. Разница между тем­пературами внутри и снаружи +45 °С.

К: Рассмотрим вариант со средней теплоизоляцией (1-1,9). Выберите то значение, которое на ваш взгляд, наиболее соответствует вашему помещению. Чем хуже теплоизоляция, тем больший коэффициент нужно выбирать. Например 1,7.

60660-shema-teplovaya-pushka-elektricheskaya.jpg

Расчет: 200 х 45 х 1,7 = 15 300 ккалч

1 кВт = 860 ккалч, соответственно 15 300860 = 17,8 кВт.

tablica-dizelnih-pushek-master.jpg

Газовые и дизельные калориферы прямого нагрева, можно использовать только в хорошо проветриваемых помещениях, или на открытых пространствах. Дизельные калориферы непрямого нагрева, можно использовать в закрытых помещениях, при условии отвода сгораемых газов за пределы помещения.

Таблица Мощности для помещений:

Расчет мощности можно сделать с помощью данной схемы (ВЫ можете скачать и распечать схему ниже)

Formula-raschyota-moshhnosti.png

Для определения необходимой мощности тепловой пушки или нагревателя воздуха нужно рассчитать минимальную нагревательную мощность для обогрева данного помещения по следующей формуле:

V х ΔT x k = ккал/ч , где:

  • V – объем обогреваемого помещения (длина, ширина, высота), м3;
  • ΔT – разница между температурой воздуха вне помещения и требуемой температурой воздуха внутри помещения, °C;
  • k – коэффициент рассеивания (теплоизоляции здания):
    k = 3,0-4,0 – без теплоизоляции (упрощённая деревянная конструкция или конструкция из гофрированного металлического листа);
    k = 2,0-2,9 – небольшая теплоизоляция (упрощённая конструкция здания, одинарная кирпичная кладка, упрощённая конструкция окон);
    k = 1,0-1,9 – средняя теплоизоляция (стандартная конструкция, двойная кирпичная кладка, небольшое число окон, крыша со стандартной кровлей);
    k = 0,6-0,9 – высокая теплоизоляция (улучшенная конструкция здания, кирпичные стены с двойной теплоизоляцией, небольшое число окон со сдвоенными рамами, толстое основание пола, крыша из высококачественного теплоизоляционного материала).

0b038906a8a843557c20c9f7e0fc1c61.png

Онлайн-расчет мощности электрического калорифера

Расход тепла вентиляционным электрокалорифером на подогрев приточного воздуха. В поля онлайн-калькулятора вносятся показатели: объем проходящего через электрический канальный калорифер холодного воздуха, температура входящего воздуха, необходимая температура на выходе из электрического калорифера. По результатам онлайн-расчета калькулятора выводится требуемая мощность электрического нагревательного модуля для соблюдения заложенных условий.

1 поле. Объем проходящего через канальный электронагреватель приточного воздуха, м³/ч
2 поле. Температура воздуха на входе в электрический калорифер, °С
3 поле. Необходимая температура воздуха на выходе из электрокалорифера, °С
4 поле. Требуемая мощность электрического калорифера (расход тепла на подогрев приточного воздуха) для введенных данных

Расчет производительности для нагрева воздуха определенного объема

Объем помещения для нагрева

Определяем массовый расход нагреваемого воздуха

G (кг/ч) = L х р

L — объемное количество нагреваемого воздуха, м.куб/час
p — плотность воздуха при средней температуре (сумму температуры воздуха на входе и выходе из калорифера разделить на два) — таблица показателей плотности представлена выше, кг/м.куб

Определяем расход теплоты для нагревания воздуха

Q (Вт) = G х c х (t кон — t нач)

G — массовый расход воздуха, кг/час с — удельная теплоемкость воздуха, Дж/(кг•K), (показатель берется по температуре входящего воздуха из таблицы)
t нач — температура воздуха на входе в теплообменник, °С
t кон — температура нагретого воздуха на выходе из теплообменника, °С

Калькулятор мощности электрических нагревателей

Расчет мощности электрического нагревателя для проточных и статичных сред

Фаренгейт Начальная температура (°C)

Fahrenheit Конечная температура (°C)

Изменение температуры (°C)

Расход (кг/ч)

Накопительные водонагреватели (бойлеры)

Без физико-математических формул бытовой расчёт описывается следующим образом: за 1 час 1 кВт нагревает 860 литров на 1 К. Для более точного определения времени нагревания, мощностных характеристик, объёма используется универсальная формула, из которой потом выводятся остальные результаты:

Эта формула состоит из нескольких и отражает целый ряд параметров, учитывая при этом фактор теплопотерь. (При малых мощностных характеристиках и большом объёме этот фактор становится более существенным, однако в бытовых нагревателях этим учётным значением чаще пренебрегают):

N full – мощностные характеристики нагревательного элемента,

Q c – теплопотери водонагревательной ёмкости.

  1. c= Q/m*(tк-tн)
    • С – удельная теплоёмкость,
    • Q – количество теплоты,
    • m – масса в килограммах (либо объём в литрах),
    • tк и tн (в °С) – конечная и начальная температуры.
  2. N=Q/t
    • N – мощностные характеристики нагрева.
    • t — время нагревания в секундах.
  3. N = N full — (1000/24)*Q c

Упрощенные формулы с постоянным коэффициентом:

  • Расчёт мощности ТЭНа для нагрева воды нужной температуры:
    W= 0,00117*V*(tк-tн)/T
  • Определение времени, необходимого для нагревания воды в водонагревателе:
    T= 0,00117*V*(tк-tн)/W
  • W (в кВТ) – мощностная характеристика ТЭНов (нагревательного элемента),
  • Т (в часах) – время нагрева воды,
  • V (в литрах) – объем бака,
  • tк и tн (в °С) – конечная и начальная температуры (конечная – обычно 60°C).

Часто объём приравнивают к массе (m). Тогда определение мощности ТЭНа будет производиться по формуле: W= 0,00117*m*(tк-tн)/T. Формулы считаются упрощёнными, ещё и потому что в них не учитывается:

  • фактическая мощность электросети,
  • температура окружающей среды,
  • конструктивные особенности и потенциальные теплопотери бака,
  • рекомендации некоторых производителей, относительно tн (порядка 5-8 °С летом и 15-18 °С – зимой).

При покупке устройства надо принимать во вниание, что относительно низкие мощностные характеристики накопительных водонагревателей по сравнению с проточными ещё не гарантируют финансовую экономию. Накопительные меньше «забирают», но из-за того, что работают дольше, больше и расходуют. Для финансовой экономии более надёжной стратегией будет общее снижение водопотребления за счёт установки различного вида экономителей (http://water-save.com/
) и строгий учёт водорасхода.

Вычисление фронтального сечения устройства, требующегося для прохода воздушного потока

Определившись с необходимой тепловой мощностью для обогрева требуемого объема, находим фронтальное сечение для прохода воздуха.

Фронтальное сечение — рабочее внутреннее сечение с теплоотдающими трубками, через которое непосредственно проходят потоки нагнетаемого холодного воздуха.

f (м.кв) = G / v

G — массовый расход воздуха, кг/час
v — массовая скорость воздуха — для оребренных калориферов принимается в диапазоне 3 — 5 (кг/м.кв•с). Допустимые значения — до 7 — 8 кг/м.кв•с

Расчет необходимой мощности для обогрева шкафов автоматики

Вычисление мощности нагрева производится по следующей формуле:

Р = А * k * ( Твнутр – Твнеш ) — Qv

Здесь Р – необходимая мощность нагрева

А – площадь эффективной поверхности теплообмена

Твнутр – Твнеш – разница температур воздуха внутри и снаружи шкафа

k – коэффициент теплоотдачи корпуса шкафа управления

Qv – суммарное тепловыделение электроприборов в шкафу

Полученная мощность используется для подбора моделей обогревателей шкафа автоматики ОША. Калькулятор, предоставленный на данной странице, поможет вам легко и быстро произвести все необходимые вычисления для определения мощности обогрева шкафа автоматики. Для более точного вычисления вы также можете обратиться к нашим специалистам по телефону или при помощи форм обратной связи. Обращайтесь к нам и получите полную консультацию по обогреву шкафов управления абсолютно бесплатно!

Пример:

Объем помещения для обогрева (ширина 4 м, длина 12 м, высота 3 м): V = 4 x 12 x 3 = 144 м3.
Наружная температура -5°C. Требуемая температура внутри +18°C. Разница температур ΔT = 18°C – (-5 C) = 23°C.
k = 4 (здание с низкой изоляцией).

Расчет мощности:
144 м3 x 23°C x 4 = 13 248 ккал/ч – нужная минимальная мощность.

Принимается:
1 кВт = 860 ккал/ч;
1 ккал = 3,97 ВТЕ;
1 кВт = 3412 ВТЕ;
1 БТЕ = 0,252 ккал/ч.

Итого: 13 248 ккал/ч / 860 = 15,4 кВт – нужная минимальная мощность в кВт.

Теперь можно выбрать тип нагревателя.

Количество электроэнергии кВт·ч и стоимость нагрева воды.

Калькулятор высчитает время нагрева воды в накопительных водонагревателях в зависимости от ёмкости бака, мощности ТЭНов, температуры нагрева и температуры входящей воды.

Вы можете указать КПД накопительного водонагревателя (обычно 95-99%).

Калькулятор взят с сайта: http://nagrev24.ru/voda

Электроэнергия преобразуется в тепло и КПД зависит от материала нагревательного элемента (от потерь электроэнергии в нем и от теплопроводности), от площади соприкосновения элемента с водой, переходных сопротивлениях контактов и потерь в шнуре электропитания. На каждом этапе теряется некоторая часть энергии. В зависимости от типа прибора, КПД находится в пределах 95-99%.

Чем эффективнее теплоизоляционные свойства материала, отделяющего внутренний бак от окружающей среды, и толще его слой, тем экономичнее водонагреватель. Современные бойлеры гарантируют снижение температуры воды не более 0,25 — 0,5 градуса в час и расход электроэнергии менее 1 кВт/ч в сутки в дежурном режиме.

Наиболее оптимальным температурным режимом работы водонагревателя 55-60°С. Это снижает электропотребление на поддержания температуры горячей воды, уменьшает образование накипи, обеспечивает более щадящий режим для внутреннего бака.

Подсчет скорости движения воды в трубах калорифера

W (м/сек) = Gw / (pw х fw)

Gw — расход теплоносителя, кг/сек
pw — плотность воды при средней температуре в воздухонагревателе (принимается по таблице внизу), кг/м.куб
fw — средняя площадь живого сечения одного хода теплообменника (принимается по таблице подбора калориферов КСк), м.кв

Расчет мощности ТЭНа

Несмотря на широкий сегодняшний ассортимент и функциональность выпускаемых различными производителями электробойлеров, их самодельные аналоги и в наше время не потеряли своей актуальности.

Обусловлено это прежде всего меньшей стоимостью последних, поэтому для реализации нагрева воды, скажем для летнего душа или умывальника на даче многие нередко используют самодельные электроводонагреватели, конструктивно представляющие собой емкость с нагревательным элементом — ТЭНом.

Калькулятор расчета необходимой мощности электрообогревателя

Евгений Афанасьев

Опубликовал(а): Евгений Афанасьев
Обновлено: 26.11.2019

Электрический обогрев помещений всегда может прийти на помощь основной системе отопления, заменить ее в осенний или весенний период межсезонья, а в особых случаях – даже стать основным источником тепла в зимнюю пору. Все зависит от того, какой тепловой мощностью обладают приобретаемые электрические нагреватели.

Калькулятор расчета необходимой мощности электрообогревателя

Калькулятор расчета необходимой мощности электрообогревателя

Несмотря на широкое разнообразие современных электрических обогревательных приборов – конвекторов, тепловентиляторов, масляных радиаторов, инфракрасных излучателей и т.п., параметр мощности для любого из них является определяющим. Именно он показывает тот эксплуатационный потенциал, который заложен производителем в это изделие. Значит, прежде чем отправляться в магазин за покупкой, необходимо четко представлять, с каким критерием оценки подходить к выбору той или иной модели. Поможет в этом — калькулятор расчета необходимой мощности электрообогревателя.

Ниже будут даны некоторые необходимые разъяснения по порядку проведения расчетов.

Калькулятор расчета необходимой мощности электрообогревателя

Пояснения по проведению расчетов мощности обогревателя

Программа калькулятора основана на учете особенностей помещения, в котором предполагается использование электрического обогревателя.

Цены на электрообогреватели

  • Прежде всего необходимо определиться, какая миссия будет возлагаться на прибор – станет ли он лишь «подмогой» для отопления, или необходимо предусмотреть вариант, когда обогреватель должен будет справиться с функцией основного источника тепла.
  • Площадь помещения – исходная величина для проведения расчетов.
  • Внешние стены – чем их больше, тем выше общее количество тепловых потерь, требующих определенной компенсации.
  • Стены с северной и восточной сторон практически никогда не получают «солнечного заряда», в отличие от южных и юго-западных.
  • Стены, расположенные с наветренной стороны, охлаждаются значительно быстрее других – это учтено в алгоритме расчета.
  • При указании уровня температур не следует указывать рекордно низкие показатели – это должно быть значение, которое является обычным для региона проживания, в самую холодную декаду зимы. Тем самым калькулятор уже учтет имеющиеся климатические особенности.
  • Степень утепления стен. Если термоизоляционные работы проводились полноценно, на основании проведенных теплотехнических расчетов, то можно отнести стены к разряду качественно утепленных. Кирпичная стена, примерно в 400÷500 мм толщиной, и аналогичная ей, могут претендовать на среднюю степень утепленности. Стены вообще без утепления, по идее, рассматриваться и вовсе не должны, так как в таком помещении даже при непозволительно большом расходе электроэнергии, комфортного микроклимата все равно не добиться. Приобретение электрообогревателя в таких условиях становится бессмысленной затеей.
  • Высота потолков – влияет на общий объем помещения.
  • Следующие два окна ввода – это характер помещений, расположенных сверху и снизу рассматриваемой комнаты. Естественно, от их особенностей зависит количество теплопотерь через верхнее и нижнее перекрытие.
  • Далее – блок полей, касающихся окон в помещении. Необходимо, в первую очередь, указать тип окон – калькулятор учтет их теплосберегающие возможности. Далее, после указания количества и размеров окон, программа вычислит коэффициент остекления (относительно площади помещения) и сделает соответствующую корректировку в расчетах.
  • Наконец, в комнате может быть одна или даже несколько используемых дверей, выходящих на улицу или в неотапливаемые помещения. Естественно, что при каждом открывании такой двери в комнату поступает немалый объем охлаждённого воздуха, который потребует дополнительного расхода тепловой мощности.

Результат дается в ваттах и киловаттах. По этим параметрам уже можно будет оценивать приглянувшуюся в магазине модель электрообогревателя.

Как правильно выбрать электрообогреватель?

Помимо мощности, существует немало иных критериев оценки подобных приборов – габариты, безопасность в работе, удобство пользования, мобильность, степень автоматизации и другие. Подробнее об аспектах выбора энергосберегающих электрических обогревателей – в специальной публикации нашего портала.

Расчет калорифера: онлайн-калькулятор расчета мощности и расхода теплоносителя

Расчет калорифера

Онлайн калькуляторы

При конструировании системы воздушного отопления используются уже готовые калориферные установки.

Для правильного подбора необходимого оборудования достаточно знать: необходимую мощность калорифера, который впоследствии будет монтироваться в системе отопления приточной вентиляции, температуру воздуха на его выходе из калориферной установки и расход теплоносителя.

Для упрощения производимых расчетов вашему вниманию представлен онлайн-калькулятор расчета основных данных для правильного подбора калорифера.

С помощью него вы сможете рассчитать:

  1. Тепловую мощность калорифера кВт. В поля калькулятора следует ввести исходные данные об объеме проходящего через калорифер воздуха, данные о температуре поступаемого на вход воздуха, необходимую температуру воздушного потока на выходе из калорифера.
  2. Температуру воздуха на выходе. В соответствующие поля следует ввести исходные данные об объеме нагреваемого воздуха, температуре воздушного потока на входе в установку и полученную при первом расчете тепловую мощность калорифера.
  3. Расход теплоносителя. Для этого в поля онлайн-калькулятора следует ввести исходные данные: о тепловой мощности установки, полученные при первом подсчете, о температуре теплоносителя подаваемого на вход в калорифер, и значение температуры на выходе из устройства.

Расчета калориферов, в качестве теплоносителя которых используется вода или пар, происходит по определенной методике. Здесь важной составляющей являются не только точные расчеты, но и определенная последовательность действий.

Расчет производительности для нагрева воздуха определенного объема

Объем помещения для нагрева

Определяем массовый расход нагреваемого воздуха

G (кг/ч) = L х р

L — объемное количество нагреваемого воздуха, м.куб/час
p — плотность воздуха при средней температуре (сумму температуры воздуха на входе и выходе из калорифера разделить на два) — таблица показателей плотности представлена выше, кг/м.куб

Определяем расход теплоты для нагревания воздуха

Q (Вт) = G х c х (t кон — t нач)

G — массовый расход воздуха, кг/час с — удельная теплоемкость воздуха, Дж/(кг•K), (показатель берется по температуре входящего воздуха из таблицы)
t нач — температура воздуха на входе в теплообменник, °С
t кон — температура нагретого воздуха на выходе из теплообменника, °С

Вычисление фронтального сечения устройства, требующегося для прохода воздушного потока

Определившись с необходимой тепловой мощностью для обогрева требуемого объема, находим фронтальное сечение для прохода воздуха.

Фронтальное сечение — рабочее внутреннее сечение с теплоотдающими трубками, через которое непосредственно проходят потоки нагнетаемого холодного воздуха.

f (м.кв) = G / v

G — массовый расход воздуха, кг/час
v — массовая скорость воздуха — для оребренных калориферов принимается в диапазоне 3 — 5 (кг/м.кв•с). Допустимые значения — до 7 — 8 кг/м.кв•с

Вычисление значений массовой скорости

Находим действительную массовую скорость для калориферной установки

V(кг/м.кв•с) = G / f

G — массовый расход воздуха, кг/час
f — площадь действительного фронтального сечения, берущегося в расчет, м.кв

Не справляетесь самостоятельно с расчетами? Отправьте нам существующие параметры вашего помещения и требования к калориферу. Мы поможем вам с расчетом. Либо посмотрите существующие вопросы от пользователей по данной теме.

Расчет расхода теплоносителя в калориферной установке

Рассчитываем расход теплоносителя

Gw (кг/сек) = Q / ((cw х (t вх — t вых))

Q — расход тепла для нагрева воздуха, Вт
cw — удельная теплоемкость воды Дж/(кг•K)
t вх — температура воды на входе в теплообменник, °С
t вых — температура воды на выходе из теплообменника, °С

Подсчет скорости движения воды в трубах калорифера

W (м/сек) = Gw / (pw х fw)

Gw — расход теплоносителя, кг/сек
pw — плотность воды при средней температуре в воздухонагревателе (принимается по таблице внизу), кг/м.куб
fw — средняя площадь живого сечения одного хода теплообменника (принимается по таблице подбора калориферов КСк), м.кв

Определение коэффициента теплопередачи

Коэффициент теплотехнической эффективности рассчитывается по формуле

Квт/(м.куб х С) = А х V n х W m

V – действительная массовая скорость кг/м.кв х с
W – скорость движения воды в трубах м/сек
A

Расчет тепловой производительности калориферной установки

Подсчет фактической тепловой мощности:

q (Вт) = K х F х ((t вх +t вых)/2 — (t нач +t кон)/2))

или, если подсчитан температурный напор, то:

q (Вт) = K х F х средний температурный напор

K — коэффициент теплоотдачи, Вт/(м.кв•°C)
F — площадь поверхности нагрева выбранного калорифера (принимается по таблице подбора), м.кв
t вх — температура воды на входе в теплообменник, °С
t вых — температура воды на выходе из теплообменника, °С
t нач — температура воздуха на входе в теплообменник, °С
t кон — температура нагретого воздуха на выходе из теплообменника, °С

Определение запаса устройства по тепловой мощности

Определяем запас тепловой производительности:

((qQ) / Q) х 100

q — фактическая тепловая мощность подобранных калориферов, Вт
Q — расчетная тепловая мощность, Вт

Расчет аэродинамического сопротивления

Расчет аэродинамического сопротивления. Величину потерь по воздуху можно рассчитать по формуле:

ΔРа (Па)=В х V r

v — действительная массовая скорость воздуха, кг/м.кв•с
B, r — значение модуля и степеней из таблицы

Определение гидравлического сопротивления теплоносителя

Расчет гидравлического сопротивления калорифера вычисляется по следующей формуле:

ΔPw(кПа)= С х W 2

С — значение коэффициента гидравлического сопротивления заданной модели теплообменника (смотреть по таблице)
W — скорость движения воды в трубках воздухонагревателя, м/сек.

Расчет калорифера как рассчитать мощность прибора для нагрева воздуха для отопления

В задачу теплового расчёта блока ТЭНов входит определение количества ТЭНов в блоке и действительной температуры поверхности нагревательного элемента. Результаты теплового расчёта используют для уточнения конструктивных параметров блока.

Задание на расчет приведено в приложении 1.

Мощность одного ТЭНа определяют исходя из мощности калорифера

Число ТЭНов z принимают кратным 3, причем мощность одного ТЭНа не должна превышать 3…4 кВт. ТЭН подбирают по паспортным данным (приложение 1).

По конструктивному исполнению различают блоки с коридорной и шахматной компоновкой ТЭНов (рисунок 1.1).

Рисунок 1.1 – Схемы компоновки блока ТЭНов

Для первого ряда нагревателей скомпонованного нагревательного блока должно выполняться условие:

где tн1 — действительная средняя температура поверхности нагревателей первого ряда, оС; Pm1 — суммарная мощность нагревателей первого ряда, Вт; ср— средний коэффициент теплоотдачи, Вт/(м2оС); Fт1- суммарная площадь теплоотдающей поверхности нагревателей первого ряда, м2; tв — температура воздушного потока после калорифера, оС.

Суммарную мощность и суммарную площадь нагревателей определяют из параметров выбранных ТЭНов по формулам
, , (1.3)

где k – количество ТЭНов в ряду, шт; Pт, Fт – соответственно мощность, Вт, и площадь поверхности, м2, одного ТЭНа.

Площадь поверхности оребренного ТЭНа
, (1.4)

где d – диаметр ТЭНа, м; lа – активная длина ТЭНа, м; hр – высота ребра, м; a – шаг оребрения, м.

Для пучков поперечно обтекаемых труб следует учитывать средний коэффициент теплоотдачи ср, так как условия передачи теплоты отдельными рядами нагревателей различны и определяются турбулизацией воздушного потока. Теплоотдача первого и второго рядов трубок по сравнению с третьим рядом меньше. Если теплоотдачу третьего ряда ТЭНов принять за единицу, то теплоотдача первого ряда составит около 0,6, второго — около 0,7 в шахматных пучках и около 0,9 — в коридорных от теплоотдачи третьего ряда. Для всех рядов после третьего коэффициент теплоотдачи можно считать неизменным и равным теплоотдаче третьего ряда.

Коэффициент теплоотдачи ТЭНа определяют по эмпирическому выражению

где Nu – критерий Нуссельта, — коэффициент теплопроводности воздуха,

Критерий Нуссельта для конкретных условий теплообмена рассчитывают по выражениям

для коридорных пучков труб

для шахматных пучков труб:

при Re  1103, (1.8)

где Re -критерий Рейнольдса.

Критерий Рейнольдса характеризует режим обтекания ТЭНов воздухом и равен
, (1.10)

где — скорость воздушного потока, м/с; — коэффициент кинематической вязкости воздуха, = 18,510-6 м2 /с.

Для обеспечения эффективной термической нагрузки ТЭНов, не приводящей к перегреву нагревателей, следует обеспечивать в зоне теплообмена движение потока воздуха со скоростью не менее 6 м/с. Учитывая возрастание аэродинамического сопротивления конструкции воздушного канала и нагревательного блока с ростом скорости потока воздуха, последнюю следует ограничить 15 м/с.

Средний коэффициент теплоотдачи

для коридорных пучков
, (1.11)

для шахматных пучков

где n — количество рядов труб в пучке нагревательного блока.

Температура воздушного потока после калорифера равна
, (1.13)

где Pк – суммарная мощность ТЭНов калорифера, кВт; — плотность воздуха, кг/м3; св – удельная теплоемкость воздуха, св= 1 кДж/(кгоС); – производительность калорифера, м3/с.

Если условие (1.2) не выполняется, выбирают другой нагревательный элемент или изменяют принятые в расчете скорость воздуха, компоновку нагревательного блока.

Таблица 1.1 — значения коэффициента сИсходные данныеПоделитесь с Вашими друзьями:

Электротехнология

РАСЧЕТ ЭЛЕКТРОКАЛОРИФЕРНОЙ УСТАНОВКИ

Рисунок 1.1 – Схемы компоновки блока ТЭНов

1.1 Тепловой расчет нагревательных элементов

В качестве нагревательных элементов в электрокалориферах используют трубчатые электронагреватели (ТЭН), смонтированные в единый конструктивный блок.

В задачу теплового расчёта блока ТЭНов входит определение количества ТЭНов в блоке и действительной температуры поверхности нагревательного элемента. Результаты теплового расчёта используют для уточнения конструктивных параметров блока.

Задание на расчет приведено в приложении 1.

Мощность одного ТЭНа определяют исходя из мощности калорифера

Pк и числа ТЭНов z, установленных в калорифере.
. (1.1)

Число ТЭНов z принимают кратным 3, причем мощность одного ТЭНа не должна превышать 3…4 кВт. ТЭН подбирают по паспортным данным (приложение 1).

По конструктивному исполнению различают блоки с коридорной и шахматной компоновкой ТЭНов (рисунок 1.1).

Рисунок 1.1 – Схемы компоновки блока ТЭНов

Для первого ряда нагревателей скомпонованного нагревательного блока должно выполняться условие:

где tн1 — действительная средняя температура поверхности нагревателей первого ряда, оС; Pm1 — суммарная мощность нагревателей первого ряда, Вт; ср— средний коэффициент теплоотдачи, Вт/(м2оС); Fт1- суммарная площадь теплоотдающей поверхности нагревателей первого ряда, м2; tв — температура воздушного потока после калорифера, оС.

Суммарную мощность и суммарную площадь нагревателей определяют из параметров выбранных ТЭНов по формулам
, , (1.3)

где k – количество ТЭНов в ряду, шт; Pт, Fт – соответственно мощность, Вт, и площадь поверхности, м2, одного ТЭНа.

Площадь поверхности оребренного ТЭНа
, (1.4)

где d – диаметр ТЭНа, м; lа – активная длина ТЭНа, м; hр – высота ребра, м; a – шаг оребрения, м.

Для пучков поперечно обтекаемых труб следует учитывать средний коэффициент теплоотдачи ср, так как условия передачи теплоты отдельными рядами нагревателей различны и определяются турбулизацией воздушного потока. Теплоотдача первого и второго рядов трубок по сравнению с третьим рядом меньше. Если теплоотдачу третьего ряда ТЭНов принять за единицу, то теплоотдача первого ряда составит около 0,6, второго — около 0,7 в шахматных пучках и около 0,9 — в коридорных от теплоотдачи третьего ряда. Для всех рядов после третьего коэффициент теплоотдачи можно считать неизменным и равным теплоотдаче третьего ряда.

Коэффициент теплоотдачи ТЭНа определяют по эмпирическому выражению

где Nu – критерий Нуссельта, — коэффициент теплопроводности воздуха,

 = 0,027 Вт/(моС); d – диаметр ТЭНа, м.

Критерий Нуссельта для конкретных условий теплообмена рассчитывают по выражениям

для коридорных пучков труб

для шахматных пучков труб:

при Re  1103, (1.8)

где Re -критерий Рейнольдса.

Критерий Рейнольдса характеризует режим обтекания ТЭНов воздухом и равен
, (1.10)

где — скорость воздушного потока, м/с; — коэффициент кинематической вязкости воздуха, = 18,510-6 м2 /с.

Для обеспечения эффективной термической нагрузки ТЭНов, не приводящей к перегреву нагревателей, следует обеспечивать в зоне теплообмена движение потока воздуха со скоростью не менее 6 м/с. Учитывая возрастание аэродинамического сопротивления конструкции воздушного канала и нагревательного блока с ростом скорости потока воздуха, последнюю следует ограничить 15 м/с.

Средний коэффициент теплоотдачи

для коридорных пучков
, (1.11)

для шахматных пучков

где n — количество рядов труб в пучке нагревательного блока.

Температура воздушного потока после калорифера равна
, (1.13)

где Pк – суммарная мощность ТЭНов калорифера, кВт; — плотность воздуха, кг/м3; св – удельная теплоемкость воздуха, св= 1 кДж/(кгоС); – производительность калорифера, м3/с.

Если условие (1.2) не выполняется, выбирают другой нагревательный элемент или изменяют принятые в расчете скорость воздуха, компоновку нагревательного блока.

Как делать расчет калорифера вентиляции

В нашем климате в холодное время года крайне важно осуществлять нагрев воздуха, который приходит в дом снаружи через вентиляцию. Если в помещении при вентиляции нет тепло-избытков, то входящий воздух должен подогреваться до той же температуры, что царит внутри помещения

В этом случае система отопления компенсирует потерю теплоты через ограждение. Но в той ситуации, когда отопление комбинируется с приточным видом вентиляции, то приточный воздух должен быть теплее, нежели воздух внутри помещения. Но если в комнате есть теплоизбыток, то входящий воздух должен иметь меньшую температуру, чем воздух, находящийся внутри. Это обеспечит ассимилиляцию тех самых теплоизбытков.

Здесь важно, сказать, что температура входящего в помещение воздуха напрямую зависит от способа его подачи. И определяться она должна после расчета приточных струй в зависимости от условий нормируемых параметров воздушной среды

Именно по этой причине важно правильно рассчитать мощность калорифера, который и занимается регулировкой температуры приточного воздуха.

Какие виды калориферов вентиляции существуют?

Первым делом важно определиться с видом такого калорифера. Выбирая калорифер нужно учитывать такие нюансы, как его мощность, климат местности, производительность устройства, габариты помещения, в котором он должен быть установлен

Так согласно с этими параметрами можно выбирать между такими видами калориферов:

  • электрокалорифер приточной вентиляции;
  • водяной калорифер.

Если говорить об электрических таких приборах, то стоит подчеркнуть, что их конструкция построена на базе переработки электрики в тепло. Это обеспечивается нагревом спирали из проволоки или же металлической нити. Таким образом тепло идет к воздушному потоку. Такие калориферы простые при монтаже, а также они доступны. Но в то же время они потребляют большое количество электроэнергии. Именно по этой причине данный воздухонагреватель лучше всего использовать вместе с рекуператором. Благодаря этому на целую четверть можно уменьшить уровень расходов электричества.

При этом такие водяные устройства для осуществления вентиляции стоят порядком дороже, но она не употребляют столько энергии и, следовательно, обойдутся вам дешевле. Вдобавок его можно даже применять в больших помещениях, так как они обладают высоким уровнем производительности. Из недостатков водяного калорифера можно назвать то, что он может обмерзнуть при очень низких температурах.

Как правильно осуществлять расчет?

Один из нюансов выбора типа калорифера является его расчет. А для того чтобы правильно определить мощность такого устройства вовсе не нужно проводить какие-либо сложные вычисления или манипуляции

Важно просто вычислить температуру воздуха на входе и выходе

В той ситуации, когда снаружи воздух упал к минимальной отметке не на долгий срок, можно не брать во внимание максимальное значение температуры и тогда в расчет можно брать более низкое значение мощности такого устройства

Расчет калорифера как рассчитать мощность прибора для нагрева воздуха для отопления

При расчете мощности калорифера вентиляции нужно тоже учесть и дополнительные данные воздухообмена. Этот показатель можно определить, взяв в расчет производительность вентиляции. Затем данные два параметра нужно умножить на теплоемкость воздуха и поделить это значение на тысячу. Сума мощности калорифера должна соответствовать сумме напряжению сети.

Онлайн калькулятор расчета мощности калорифера

Эффективная работа вентиляции зависит от правильного расчёт и подбора оборудования, так как эти два пункта взаимосвязаны между собой. Для упрощения этой процедуры мы подготовили для Вас онлайн калькулятор расчета мощности калорифера.

Подбор мощности калорифера невозможен без определения типа вентилятора, а расчёт температуры внутреннего воздуха бесполезен без подбора калорифера, рекуператора и кондиционера. Определение параметров воздуховода невозможно без вычисления аэродинамических характеристик. Расчёт мощности калорифера вентиляции ведётся по нормативным параметрам температуры воздуха, и ошибки на этапе проектирования приводят к увеличению затрат, а также невозможности поддержать микроклимат на требуемом уровне.

Расчет калорифера как рассчитать мощность прибора для нагрева воздуха для отопления

Калорифер (более профессиональное название «канальный нагреватель») – универсальный прибор, используемый во внутренних системах вентилирования для передачи тепловой энергии от нагревательных элементов к воздуху, проходящему через систему полых трубок.

Канальные нагреватели различаются способом передачи энергии и разделяются на:

  1. Водяные — энергия передаётся через трубы с горячей водой, паром.
  2. Электрические — тэны, получающие энергию от центральной сети электроснабжения.

Существуют также калориферы, работающие по принципу рекуперации: это утилизации тепла из помещения за счёт его передачи приточному воздуху. Рекуперации осуществляется без контакта двух воздушных сред.

Электрический калорифер

Основа – нагревательный элемент из проволоки или спиралей, через него проходит электрический ток. Между спиралями пропускается холодный уличный воздух, он нагревается и подаётся в помещение.

Электрокалорифер подходит для обслуживания вентсистем небольшой мощности, так как особого расчёта для его эксплуатации не требуется, поскольку все необходимые параметры указываются производителем.

Главный недостаток этого агрегата — инерция между нагревательными нитями, она приводит к постоянному перегреву, и, как следствие, выходу прибора из строя. Проблема решается установкой дополнительных компенсаторов.

Расчет калорифера как рассчитать мощность прибора для нагрева воздуха для отопления

Водяной калорифер

Основа водяного калорифера – нагревательный элемент из полых металлических трубок, через них пропускается горячая вода или пар. Наружный воздух поступает с противоположной стороны. Проще говоря, воздух движется сверху вниз, а вода — снизу вверх. Таким образом, пузырьки кислорода удаляются через специальные клапаны.

Водяной канальный нагреватель используется в большей части крупных и средних вентиляционных систем. Этому способствует высокая производительность, надёжность и ремонтопригодность оборудования.

Кроме нагревательного элемента в состав системы входит: (обеспечивает подвод теплоносителя к обменщику), насос, прямые и обратные клапаны, запорная арматура и блок для автоматического управления. Для климатических зон, где минимальная температура зимой опускается ниже нуля, предусматривается система предотвращения замерзания рабочих трубок.

Расчёт мощности

Объёма воздуха, проходящего через аппарат за единицу времени. Измеряется соответственно кг/ч или м3/ч.Методика вычисления заключается в подборе аппарата с такими параметрами, чтобы на выходе температура воздуха соответствовала нормативным значениям, а запас мощности позволял бесперебойно работать при пиковых нагрузках, но при этом не страдала кратность и скорость воздухообмена. Проектировщик начинает рассчитывать мощность только после получения всех исходных данных:

РАСЧЕТ ТЕПЛОВОЙ МОЩНОСТИ ДЛЯ ВЫБОРА НАГРЕВАТЕЛЯ

25777_164052.jpg

К – Коэффициент тепловых потерь (зависит от типа конструкции и изоляции помещения):

Без теплоизоляции ( К=3,0-4,0 ) – Деревянная конструкция или конструкция из гофрированного металлического листа.

Простая теплоизоляция ( К=2,0-2,9 ) – Здание с одинарной кирпичной кладкой, упрощенная конструкция окон и крыши.

Средняя теплоизоляция ( К=1,0-1,9 ) – Стандартная конструкция. Двойная кирпичная кладка, крыша со стандартной кровлей, небольшое кол-во окон.

Высокая теплоизоляция ( К=0,6-0,9 ) – Кирпичные стены с двойной теплоизоляцией, небольшое кол-во окон со сдвоенными рамами, толстое основание пола, крыша из высококачественного теплоизоляционного материала.

Пример:

Объем помещения: 5 х 16 х 2,5 = 200

∆Т: Температура наружного воздуха -20 °С. Требуемая температура внутри помещения +25 °С. Разница между тем­пературами внутри и снаружи +45 °С.

К: Рассмотрим вариант со средней теплоизоляцией (1-1,9). Выберите то значение, которое на ваш взгляд, наиболее соответствует вашему помещению. Чем хуже теплоизоляция, тем больший коэффициент нужно выбирать. Например 1,7.

60660-shema-teplovaya-pushka-elektricheskaya.jpg

Расчет: 200 х 45 х 1,7 = 15 300 ккалч

1 кВт = 860 ккалч, соответственно 15 300860 = 17,8 кВт.

tablica-dizelnih-pushek-master.jpg

Газовые и дизельные калориферы прямого нагрева, можно использовать только в хорошо проветриваемых помещениях, или на открытых пространствах. Дизельные калориферы непрямого нагрева, можно использовать в закрытых помещениях, при условии отвода сгораемых газов за пределы помещения.

Таблица Мощности для помещений:

Расчет мощности можно сделать с помощью данной схемы (ВЫ можете скачать и распечать схему ниже)

Formula-raschyota-moshhnosti.png

Расчёт мощности тепловой пушки, нагревателя воздуха

Для определения необходимой мощности тепловой пушки или нагревателя воздуха нужно рассчитать минимальную нагревательную мощность для обогрева данного помещения по следующей формуле:

V х ΔT x k = ккал/ч , где:

  • V – объем обогреваемого помещения (длина, ширина, высота), м3;
  • ΔT – разница между температурой воздуха вне помещения и требуемой температурой воздуха внутри помещения, °C;
  • k – коэффициент рассеивания (теплоизоляции здания):
    k = 3,0-4,0 – без теплоизоляции (упрощённая деревянная конструкция или конструкция из гофрированного металлического листа);
    k = 2,0-2,9 – небольшая теплоизоляция (упрощённая конструкция здания, одинарная кирпичная кладка, упрощённая конструкция окон);
    k = 1,0-1,9 – средняя теплоизоляция (стандартная конструкция, двойная кирпичная кладка, небольшое число окон, крыша со стандартной кровлей);
    k = 0,6-0,9 – высокая теплоизоляция (улучшенная конструкция здания, кирпичные стены с двойной теплоизоляцией, небольшое число окон со сдвоенными рамами, толстое основание пола, крыша из высококачественного теплоизоляционного материала).

0b038906a8a843557c20c9f7e0fc1c61.png

Пример:

Объем помещения для обогрева (ширина 4 м, длина 12 м, высота 3 м): V = 4 x 12 x 3 = 144 м3.
Наружная температура -5°C. Требуемая температура внутри +18°C. Разница температур ΔT = 18°C – (-5 C) = 23°C.
k = 4 (здание с низкой изоляцией).

Расчет мощности:
144 м3 x 23°C x 4 = 13 248 ккал/ч – нужная минимальная мощность.

Принимается:
1 кВт = 860 ккал/ч;
1 ккал = 3,97 ВТЕ;
1 кВт = 3412 ВТЕ;
1 БТЕ = 0,252 ккал/ч.

Итого: 13 248 ккал/ч / 860 = 15,4 кВт – нужная минимальная мощность в кВт.

Расчет-онлайн электрических калориферов

На странице сайта представлен онлайн-расчет электрических калориферов с нахождением следующих теплотехнических данных:
1. требуемой мощности электрокалорифера, в зависимости от объема и температуры нагреваемого воздуха;
2. температуры воздуха на выходе из электрического калорифера.

Расчет электрического калорифера онлайн калькулятор

Расчет электрического калорифера приточного воздуха

Онлайн расчет вентиляционного калорифера

Онлайн-расчет мощности электрического калорифера

Расход тепла вентиляционным электрокалорифером на подогрев приточного воздуха. В поля онлайн-калькулятора вносятся показатели: объем проходящего через электрический канальный калорифер холодного воздуха, температура входящего воздуха, необходимая температура на выходе из электрического калорифера. По результатам онлайн-расчета калькулятора выводится требуемая мощность электрического нагревательного модуля для соблюдения заложенных условий.

1 поле. Объем проходящего через канальный электронагреватель приточного воздуха, м³/ч
2 поле. Температура воздуха на входе в электрический калорифер, °С
3 поле. Необходимая температура воздуха на выходе из электрокалорифера, °С
4 поле. Требуемая мощность электрического калорифера (расход тепла на подогрев приточного воздуха) для введенных данных

Онлайн-подбор электрического калорифера

Онлайн-подбор электрического калорифера по объему нагреваемого воздуха и тепловой мощности. Ниже выложена таблица с номенклатурой электрокалориферов производства ЗАО Т.С.Т., по которой можно ориентировочно подобрать подходящий для ваших данных канальный электрический модуль. На каждый воздушный калорифер серии СФО представлен наиболее приемлемый (для этой модели и номера) диапазон нагреваемого воздуха, а также некоторые диапазоны температуры воздуха на входе и выходе из нагревателя. Кликнув мышкой по наименованию выбранного электрического воздухоподогревателя, можно перейти на страницу с его подробными теплотехническими характеристиками.

Наименование калорифера Установленная тепловая мощность, кВт Диапазон производительности по воздуху, м³/ч Температура входящего / выходящего воздуха, °с
СФО-16 15 800 – 1500 -25 / +22 +1
-20 / +28 +6
-15 / +34 +11
-10 / +40 +17
-5 / +46 +22
0 / +52 +28
Наименование калорифера Установленная тепловая мощность, кВт Диапазон производительности по воздуху, м³/ч Температура входящего / выходящего воздуха, °с
СФО-25 22.5 1500 – 2300 -25 / +13 +1
-20 / +18 +5
-15 / +24 +11
-10 / +30 +16
-5 / +36 +22
0 / +41 +27
Наименование калорифера Установленная тепловая мощность, кВт Диапазон производительности по воздуху, м³/ч Температура входящего / выходящего воздуха, °с
СФО-40 45 2300 – 3500 -30 / +18 +2
-25 / +24 +7
-20 / +30 +13
-10 / +42 +24
-5 / +48 +30
0 / +54 +35
Наименование калорифера Установленная тепловая мощность, кВт Диапазон производительности по воздуху, м³/ч Температура входящего / выходящего воздуха, °с
СФО-60 67.5 3500 – 5000 -30 / +17 +3
-25 / +23 +9
-20 / +29 +15
-10 / +35 +20
-5 / +41 +26
0 / +47 +32
Наименование калорифера Установленная тепловая мощность, кВт Диапазон производительности по воздуху, м³/ч Температура входящего / выходящего воздуха, °с
СФО-100 90 5000 – 8000 -25 / +20 +3
-20 / +26 +9
-15 / +32 +14
-10 / +38 +20
-5 / +44 +25
0 / +50 +31
Наименование калорифера Установленная тепловая мощность, кВт Диапазон производительности по воздуху, м³/ч Температура входящего / выходящего воздуха, °с
СФО-160 157.5 8000 – 12000 -30 / +18 +2
-25 / +24 +8
-20 / +30 +14
-10 / +36 +19
-5 / +42 +25
0 / +48 +31
Наименование калорифера Установленная тепловая мощность, кВт Диапазон производительности по воздуху, м³/ч Температура входящего / выходящего воздуха, °с
СФО-250 247.5 12000 – 20000 -30 / +21 +1
-25 / +27 +6
-20 / +33 +12
-10 / +39 +17
-5 / +45 +23
0 / +51 +29

Онлайн-расчет расхода пара калорифером

Расход пара в зависимости от мощности калорифера. В верхнее поле калькулятора вносится значение тепловой мощности подобранного промышленного воздухонагревателя. В выпадающем меню выбирается давление сухого насыщенного пара, поступающего в калорифер приточной вентиляции. По результатам онлайн-расчета показывается необходимый расход теплоносителя для выработки указанной производительности по теплу.

1 поле. Объем проходящего через калорифер приточного воздуха, м³/ч
2 поле. Температура воздуха на входе в электрический калорифер, °С
3 поле. Тепловая мощность подобранного канального воздухоподогревателя, кВт
4 поле (результат). Температура воздуха на выходе из электрокалорифера, °С

Подробное описание, теплотехнические характеристики, чертежи и схемы подключения электрических воздухонагревателей представлены на странице сайта: Электрокалориферы СФО.

Расчет калорифера

Калориферы – приборы, применяемые для нагревания воздуха в приточных системах вентиляции, системах кондиционирования воздуха, воздушного отопления, а также в сушильных камерах.

Подбор калорифера осуществляется на холодный период.

Определяем расход тепла на нагревание приточного воздуха (Богословский, стр. 202, ф-ла XII.1):

где – массовое количество нагреваемого воздуха, кг/ч;

– начальная и конечная температура воздуха, т.е. до калорифера и после него соответственно;

– удельная теплоемкость воздуха ().

Задаваясь массовой скорость 4,6 кг/с·м 2 находим необходимую площадь живого сечения калориферной установки (Богословский, стр. 203, ф-ла XII.4):

Калорифер с данной площадью живого сечения существует, следовательно, необходимо установить только 1 калорифер.

Определяемся с установкой калориферов. Теплоноситель принимаем – воду. Она должна пройти через площадь сечения трубок каждого калорифера (принимаем по табл. 2.23 спр. Староверова, стр. 424):

– температура горячей воды

– температуры оборотной воды

Определяем скорость движения теплоносителя в трубках калорифера (Богословский, стр. 203, ф-ла XII.8):

где – плотность воды

– теплоемкость воды

– площадь живого сечения по теплоносителю

Находим коэффициент теплопередачи (Староверов, стр. 423, табл. II.22):

Площадь поверхности нагрева:

Находим необходимую площадь поверхности нагрева калорифера:

где – средняя температура теплоносителя

– средняя температура нагрева воздуха, проходящего через калорифер

Определяем запас площади нагрева калорифера:

Определяем сопротивление калорифера проходу воздуха:

где – число последовательно расположенных калориферов;

– сопротивление одного калорифера.

Проверяем значение сопротивления калорифера проходу воздуха:

Подбор и расчет воздухораспределителей

Так как в цехе имеются пылевыделения, то приток воздуха необходимо делать в верхнюю зону помещения. В помещениях большой высоты возможна подача притока свободными струями.

Для дальнейших расчетов выберем приколонные четырехструйные воздухораспределители серии НРВ.

Для того, чтобы начать расчет, необходимо определить возможное количество воздухораспределителей

где – объем приточного воздуха на холодный период года, 24361 кг/ч;

– производительность одного воздухораспределителя, принимаемая (Староверов, стр. 195, табл. 8.9.)

24361/5 = 4872,2 м 3 /ч – расход воздуха на участке.

Выбираем 5 воздухораспределителей с номинальной пропускной способностью 5000 м 3 /ч. Площадь выпускного патрубка м 2 .

Расчет по Староверову:

Воздухораспределители следует рассчитывать по схеме 3, пользуясь нижеприведенными формулами (Староверов, табл. 8.1, стр. 178). Принять в этих формулах Кв = 1, , ξ =3 (Староверов, стр. 195)

Расчет проводим по методичке:

Место входа оси плоской струи в рабочую зону примем в плоскости оси прохода. Оно представляет собой прямую, расположенную на плоскости, ограничивающей сверху рабочую зону и отстоящую на расстоянии 2 м от пола.

Ось воздухоприточной струи помещаем на высоте 8 метров или 0,6 от высоты помещения. Это условие обеспечивает свободное развитие струи и не налипание ее на потолок или пол.

Исходя из расположения оси струи и места расположения линии пересечения оси плоской струи с верхней границей рабочей зоны, принимаем координату x=2,5 м, а координату y=1,0 м.

Расчетная длина оси струи:

Для щели коэффициенты затухания: m=4,5 n=3,2 (Староверов, стр. 180, табл. 8.1.)

Задаемся температурой притока, с учетом подогрева в вентиляторе – 11. Избыточная температура составит 20-11=9.

Параметры воздуха на входе струи в рабочую зону определяем в соответствии с обязательным приложением 6:

Максимальная скорость на оси струи 1,8*0,2 = 0,36 м/с

Избыточная температура

Задаемся шириной щели 0,05 м, тогда скорость приточного воздуха на выходе из щели, обеспечивающая вход струи в точку с указанными координатами, равна:

Длина щели принимается равной 0,8*47,2 = 37,76. Тогда ширина щели, рассчитанная по величине притока:

Ширина щели = 0,2 м.

Определяем скорость на входе струи в рабочую зону. В нашем случае , так как 8,5

Более точно скорость на входе в рабочую зону определится после введения поправки на стеснение, принимаемой по данным таблицы. Величина

С учетом поправки

Максимальная скорость в обратном потоке

Определяем избыточную температуру на входе в рабочую зону:

Относительная площадь струи, поступающая в помещение:

Равномерность распределения параметров в рабочей зоне помещения удовлетворяют требованиям норм (0,5 ≥ ≥ 0,2)

Ссылка на основную публикацию